Une publication du LHEEA sur les interactions fluides-structures reçoit le prix du "Meilleur Article 2022" de la revue Engineering Analysis with Boundary Elements

Ce prix est décerné depuis 2018 aux publications ayant eu un fort impact dans le domaine concerné. La revue Engineering analysis with boundary elements a un impact factor de 3.3, en constante augmentation ces dernières années. L'auteur principal, PengNan Sun, a passé 2 années de Post-Doc au sein du LHEEA entre 2018 et 2020.

le 21 juillet 2022

La publication concernée est : Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR, P.N. Sun (Ecole Centrale Nantes, LHEEA (ECN and CNRS), Nantes, France), D. Le Touzé (Ecole Centrale Nantes, LHEEA (ECN and CNRS), Nantes, France), A.M. Zhang (College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China).

Les recherches ayant conduit à la publication de cet article sont issues d'une collaboration internationale de longue date entre le LHEEA et le CNR-INM (Institute of Marine Engineering en Italie) où PengNan a passé la moitié de sa thèse, et plus récemment Harbin Engineering University dont PengNan est docteur. Il a ensuite effectué un post-doc dans l'équipe IIHNE du LHEEA dirigée par David Le Touzé entre 2018 et 2020. PengNan est aujourd'hui Professeur Associé en Chine, à la Sun Yat-Sen university de Zhuhai. Les collaborations entre PengNan et le LHEEA se poursuivent encore aujourd'hui.

Abstract de l'article

The present work is dedicated to an accurate modeling of violent Fluid-Structure-Interaction (FSI) problems using a coupled Lagrangian particle method combining a multi-phase δ-SPH  scheme and a Total-Lagrangian-Particle (TLP) method. Advanced numerical techniques, e.g. Adaptive-Particle-Refinement (APR), have been included in the particle method for improving the local accuracy and the overall numerical efficiency. On one hand, this paper aims to demonstrate the capability of the proposed numerical method in modeling FSI flows with large density-ratios, strong fluid impacts, complex interfacial evolutions and considerable wall-boundary movements and deformations; On the other hand, the numerical results presented in this paper show the importance of considering the existence of air-phase in some complex FSI problems. The entrapped air-bubble, after the free-surface rolling and closing, plays an important role in the overall flow evolution and hence the hydrodynamic load on the structure. Although a density ratio as large as 1000 has been adopted, clear and sharp multi-phase interfaces, which undergo violent breakups and reconnections, are present in the numerical results, and more importantly, stable and smooth pressure fields are obtained. This contributes to an accurate prediction of the structural response, as validated by both the experimental data and other numerical results.

Consulter l'article

https://hal.archives-ouvertes.fr/hal-02456356
Publié le 21 juillet 2022 Mis à jour le 5 septembre 2023