M. Guillaume Ducrozet

Assistant professor of Hydrodynamics

Contact details

Ecole Centrale Nantes 1, rue de la Noë 44321 Nantes, France

(+33) 240 371 645
(+33) 240 372 523

Taught academic discipline(s)

My teaching activities takes place at Ecole Centrale de Nantes and are mainly:
  • Fluid mechanics
  • Water Waves and Sea States Modeling
Those different activities are part of:

Research topics

My current research interests focus on the numerical modelling of nonlinear gravity waves in oceans and wave tanks. I work on the development of efficient numerical models in this concern and especially with pseudo-spectral methods (High-Order Spectral approach). Using those models, I am interested in the understanding of nonlinear processes during wave generation and propagation (instabilities, freak waves…). The inclusion of additional physical processes in nonlinear wave models is now my primary concern: variable bathymetry, wind forcing, whitecapping dissipation…

In addition, I work in close collaboration with other members of LHEEA Lab. for wave-structure interactions and the set-up of efficient coupling strategies: RANS solvers with SWENS approach or SPH method.

My research activities lead me to take part to different collaborations and research projects. For instance:
  • IRT Jules Verne: SimAvHy and HySMar research projects
  • ANR projects (Monacorev, Turbulon, …)

Activities / Resume


  • Zhang H.D., Ducrozet G., Klein M. and Guedes Soares C. : An experimental and numerical study on breather solutions for surface waves in the intermediate water depth. Ocean Engng., Vol. 133, pp. 262-270, 2017. http://dx.doi.org/10.1016/j.oceaneng.2017.01.030
  • Letournel L., Ducrozet G., Babarit, A. and Ferrant P. : Proof of the equivalence of Tanizawa–Berkvens’ and Cointe–van Daalen’s formulations for the time derivative of the velocity potential for non-linear potential flow solvers. App. Ocean Res., Vol. 63, pp. 184-199, 2017. http://dx.doi.org/10.1016/j.apor.2017.01.010
  • Gouin M., Ducrozet G. and Ferrant P. : Propagation of 3D nonlinear waves over an elliptical mound with a High-Order Spectral method. Eur. J. Mech. B-Fluid, Vol. 63, pp. 9-24, 2017. http://dx.doi.org/10.1016/j.euromechflu.2017.01.002
  • Ducrozet, G., Fink, M. and Chabchoub, A. : Time-reversal of nonlinear waves: Applicability and limitations. Phys. Rev. Fluids, Vol. 1 (5), 054302, 2016. http://dx.doi.org/10.1103/PhysRevFluids.1.054302
  • Ducrozet G., Bonnefoy F. and Ferrant P. : On the equivalence of unidirectional rogue waves detected in periodic simulations and reproduced in numerical wave tanks. Ocean Engng., Vol. 117, pp. 346-358, 2016. http://dx.doi.org/10.1016/j.oceaneng.2016.03.027
  • Ducrozet G., Bonnefoy F., Le Touzé D. and Ferrant P. : HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method. Comp. Phys. Comm., Vol. 203, pp. 245-254, 2016. http://dx.doi.org/10.1016/j.cpc.2016.02.017
  • Gouin M., Ducrozet G. and Ferrant P. : Development and validation of a non-linear spectral model for water waves over variable depth. Eur. J. Mech. B-Fluid, Vol. 57, pp. 115-128, 2016. http://dx.doi.org/10.1016/j.euromechflu.2015.12.004
  • Ducrozet G., Engsig-Karup A.P., Bingham H.B. and Ferrant P. : A non-linear wave decomposition model for efficient wave-structure interaction. Part A: Formulation, validations and analysis. J. Comp. Phys., Vol. 257, pp. 863-883, 2014. http://dx.doi.org/10.1016/j.jcp.2013.09.017
  • Ducrozet G., Bonnefoy F., Le Touzé D. and Ferrant P. : A modified High-Order Spectral method for wavemaker modeling in a Numerical Wave Tank. Eur. J. Mech. B-Fluid, Vol. 34, pp. 19-34, 2012. http://dx.doi.org/10.1016/j.euromechflu.2012.01.017
  • Ducrozet G., Bingham H.B., Engsig-Karup A.P., Bonnefoy F. and Ferrant P. : A comparative study of two fast nonlinear free-surface water wave models. Int. J. Numer. Meth. Fl., Vol. 69(11), pp. 1818-1834, 2012. http://dx.doi.org/10.1002/fld.2672
  • Monroy C., Ducrozet G., Bonnefoy F.; Babarit A.; Gentaz L. and Ferrant P. : RANS Simulations of a Calm Buoy in Regular and Irregular Seas using the SWENSE Method. Int. J. Offshore Polar, Vol. 21(4), pp. 264-271, 2010.
  • Ducrozet G., Bingham H.B., Engsig-Karup A.P. and Ferrant P. : High-order finite difference solution for 3D nonlinear wave-structure interaction. J. Hydrodyn., Volume 22 (5), Supp. 1, pp. 225-230, 2010. http://dx.doi.org/10.1016/S1001-6058(09)60198-0
  • Bonnefoy F., Ducrozet G. , Le Touzé, D. and Ferrant, P. : Time domain simulation of nonlinear water waves using spectral methods. Advances in Numerical Simulation of Nonlinear Water Waves (World Scientific), Vol. 11, pp. 129-164, 2009. http://dx.doi.org/10.1142/9789812836502_0004
  • Ducrozet G., Bonnefoy F., Le Touzé D., Ferrant P. : 3D HOS Simulations of Extreme Waves in Open Seas. Nat. Hazard Earth Sys., Vol. 225, pp. 1472-1492, 2007. http://dx.doi.org/10.5194/nhess-7-109-2007
  • Ducrozet G., Bonnefoy F., Le Touzé D., Ferrant P. : Implementation and Validation of Nonlinear Wave Maker Models in a HOS Numerical Wave Tank. Int. J. Offshore Polar, Vol. 16 (3), pp. 161-167, 2006.
Publié le April 5, 2017 Mis à jour le April 5, 2017